Aineko Dream: code generation with ChatGPT
We built an app called Aineko Dream to test-drive Aineko's ability to enable generative AI features. Aineko Dream uses the OpenAI API and the Aineko docs to generate template code for an Aineko pipeline based on a prompt. The pipeline automatically checks the LLM response to ensure it passes some tests and either generates a prompt to fix the errors or passes the response back to the user.
This app demonstrates how you can rapidly prototype features that use foundation models by leveraging Aineko features, such as REST client connectors, stateful feedback loops, and API endpoints. Real-time QA allows us to ensure the quality of LLM responses while maintaining an interactive experience for users.
Give it a try using the Aineko Dream bot in our Slack. Or checkout the code on GitHub.
What will you dream up with Aineko?
Featured Unlocks
Tell a Story with Your Data - With Aineko, you retain all critical information with the context to help you tell a story in real-time and retroactively.
Aineko made it simple to introduce a feedback loop for real-time QA for ChatGPT responses. We keep track of response evaluation results and submit new prompts to ChatGPT to fix the errors, without any human intervention. Additionally, since we are tracking all prompts, responses, and their evaluation results, we generate a rich dataset of our app’s performance which we can use to track and improve performance.
Move Fast, Break Nothing - By representing our use case as an Aineko pipeline, it was clear how we could swap building blocks in and out with ease.
Aineko made it easy to try out new foundation models. Once the pipeline was constructed with GPT-3 it was trivial to use GPT-4. Later, we built a second connector node for the Cohere API and used it as a drop-replacement for OpenAI. We were able to run all three models with standalone pipelines, each with its own unique API endpoint. We can use the various endpoints to route traffic for different users or use one for production and the others for development.
Tech overview
With the Aineko framework in mind, we broke the problem down into a few key steps:
- Fetch GitHub events
- Update documentation used for prompt
- Retrieve prompt from user
- Prompt engineering
- Query an LLM
- Evaluate result
- Return to step 4, or return LLM response to user
We used the following libraries and APIs to build our app.
FastAPI & Uvicorn: used to run an API server on Aineko and configure endpoints used by the application.
PyGitHub: used as a client to interact with GitHub to fetch relevant documents.
OpenAI & Cohere: used to run inference using their LLMs.
Bandit: used to run security tests against Python code that gets generated by the LLMs.
The pipeline
We start first with a simple example represented by the following diagram.
flowchart LR
classDef datasetClass fill:#87CEEB
classDef nodeClass fill:#eba487
T_github_event[github_event]:::datasetClass --> N_GitHubDocFetcher((GitHubDocFetcher)):::nodeClass
N_GitHubDocFetcher((GitHubDocFetcher)):::nodeClass --> T_document[document]:::datasetClass
T_user_prompt[user_prompt]:::datasetClass --> N_PromptModel((PromptModel)):::nodeClass
T_document[document]:::datasetClass --> N_PromptModel((PromptModel)):::nodeClass
N_PromptModel((PromptModel)):::nodeClass --> T_generated_prompt[generated_prompt]:::datasetClass
T_generated_prompt[generated_prompt]:::datasetClass --> N_GPT3Client((GPT3Client)):::nodeClass
N_GPT3Client((GPT3Client)):::nodeClass --> T_llm_response[llm_response]:::datasetClass
T_llm_response[llm_response]:::datasetClass --> N_APIServer((APIServer)):::nodeClass
N_APIServer((APIServer)):::nodeClass --> T_user_prompt[user_prompt]:::datasetClass
N_APIServer((APIServer)):::nodeClass --> T_github_event[github_event]:::datasetClass
The API server accepts commit events from GitHub and prompt requests from users. The commit events trigger updates to the document that is used to engineer the LLM prompt. The engineered prompt is passed to the OpenAI API and the response is returned to the API server.
If we wanted to add a few evaluation steps to ensure that the LLMs response is valid, we can do so as shown in the following diagram.
flowchart LR
classDef datasetClass fill:#87CEEB
classDef nodeClass fill:#eba487
T_github_event[github_event]:::datasetClass --> N_GitHubDocFetcher((GitHubDocFetcher)):::nodeClass
N_GitHubDocFetcher((GitHubDocFetcher)):::nodeClass --> T_document[document]:::datasetClass
T_user_prompt[user_prompt]:::datasetClass --> N_PromptModel((PromptModel)):::nodeClass
T_document[document]:::datasetClass --> N_PromptModel((PromptModel)):::nodeClass
N_PromptModel((PromptModel)):::nodeClass --> T_generated_prompt[generated_prompt]:::datasetClass
T_generated_prompt[generated_prompt]:::datasetClass --> N_GPT3Client((GPT3Client)):::nodeClass
N_GPT3Client((GPT3Client)):::nodeClass --> T_llm_response[llm_response]:::datasetClass
T_llm_response[llm_response]:::datasetClass --> N_PythonEvaluation((PythonEvaluation)):::nodeClass
N_PythonEvaluation((PythonEvaluation)):::nodeClass --> T_evaluation_result[evaluation_result]:::datasetClass
T_llm_response[llm_response]:::datasetClass --> N_SecurityEvaluation((SecurityEvaluation)):::nodeClass
N_SecurityEvaluation((SecurityEvaluation)):::nodeClass --> T_evaluation_result[evaluation_result]:::datasetClass
T_evaluation_result[evaluation_result]:::datasetClass --> N_EvaluationModel((EvaluationModel)):::nodeClass
N_EvaluationModel((EvaluationModel)):::nodeClass --> T_final_response[final_response]:::datasetClass
N_EvaluationModel((EvaluationModel)):::nodeClass --> T_generated_prompt[generated_prompt]:::datasetClass
T_final_response[final_response]:::datasetClass --> N_APIServer((APIServer)):::nodeClass
N_APIServer((APIServer)):::nodeClass --> T_user_prompt[user_prompt]:::datasetClass
N_APIServer((APIServer)):::nodeClass --> T_github_event[github_event]:::datasetClass
Here we add 2 evaluation steps and an evaluation model:
- The
PythonEvaluation
node validates that the LLM proposes valid Python code. - The
SecurityEvaluation
node runs checks using Bandit to ensure that the Python code that is proposed doesn’t contain any known security concerns. - The
EvaluationModel
node reads evaluation results and decides whether to generate another prompt or submit the final result to the API server. It keeps track of the evaluation results and the number of times we query the LLM.
Pipeline configuration
Here is the pipeline configuration used to generate this example. We could even configure and run three separate pipelines that use different models and expose different endpoints for each of them.
Pipeline configuration
pipeline:
name: gpt3-template-generator
nodes:
# Prompt generation
# This node can be configured to target any GitHub repo
GitHubDocFetcher:
class: aineko_dream.nodes.GitHubDocFetcher
inputs:
- github_event
outputs:
- document
node_params:
organization: "aineko-dev"
repo: "aineko"
branch: "documentation"
file_path: "/docs/"
PromptModel:
class: aineko_dream.nodes.PromptModel
inputs:
- user_prompt
- document
outputs:
- generated_prompt
# LLM Client: defines model to use. Change to use another model like GPT-4
# If we wanted to use Cohere, switch `OpenAIClient` to `Cohere`.
GPT3Client:
class: aineko_dream.nodes.OpenAIClient
inputs:
- generated_prompt
outputs:
- llm_response
node_params:
model: "gpt-3.5-turbo-16k"
max_tokens: 4000
temperature: 0.1
# Response evaluation
PythonEvaluation:
class: aineko_dream.nodes.PythonEvaluation
inputs:
- llm_response
outputs:
- evaluation_result
SecurityEvaluation:
class: aineko_dream.nodes.SecurityEvaluation
inputs:
- llm_response
outputs:
- evaluation_result
EvaluationModel:
class: aineko_dream.nodes.EvaluationModel
inputs:
- evaluation_result
outputs:
- final_response
- generated_prompt
node_params:
max_cycles: 2
# API
APIServer:
class: aineko_dream.nodes.APIServer
inputs:
- final_response
outputs:
- user_prompt
- github_event
node_params:
app: aineko_dream.api.main:app
port: 8000
Node code
Here are some samples of the node code used to run this pipeline.
The GitHubDocFetcher
emits the latest document when it initializes and updates the document based on triggers from a GitHub webhook that is configured to target the API server. The document is passed to the PromptModel
to engineer a prompt based on the latest document.
The OpenAIClient
node creates a connection to the OpenAI API and submits requests to the configured model using the ChatCompletion interface. The response is passed on to the evaluation nodes.
The SecurityEvaluation
node takes the LLM response and creates a temporary file with the contents. Aineko Dream then uses Bandit to run a test against the file and collect a list of issues. After cleaning up, the results are submitted to the EvaluationModel
node.
Node code examples
class GitHubDocFetcher(AbstractNode):
"""Node that fetches code documents from GitHub."""
def _pre_loop_hook(self, params: Optional[dict] = None) -> None:
"""Initialize connection with GitHub and fetch latest document."""
# Set parameters
self.access_token = os.environ.get("GITHUB_ACCESS_TOKEN")
self.organization = params.get("organization")
self.repo = params.get("repo")
self.branch = params.get("branch")
self.file_path = params.get("file_path")
# Initialize github client
auth = Auth.Token(token=self.access_token)
self.github_client = Github(auth=auth)
# Fetch current document
self.emit_new_document()
def _execute(self, params: Optional[dict] = None) -> Optional[bool]:
"""Update document in response to commit events."""
# Check for new commit events from GitHub
message = self.inputs["github_event"].read()
if message is None:
return
# Fetch latest document and send update
self.log("Received event from GitHub, fetching latest document.")
self.emit_new_document()
def emit_new_document(self) -> None:
"""Emit new document."""
repo = self.github_client.get_repo(f"{self.organization}/{self.repo}")
contents = repo.get_contents(self.file_path, ref=self.branch)
github_contents = {f.path: f.decoded_content.decode("utf-8") for f in contents}
self.outputs["document"].write(github_contents)
self.log(
f"Fetched documents for {self.organization}/{self.repo} branch {self.branch}"
)
class OpenAIClient(AbstractNode):
"""Node that queries OpenAI LLMs."""
def _pre_loop_hook(self, params: Optional[dict] = None) -> None:
"""Initialize connection with OpenAI."""
self.model = params.get("model")
self.max_tokens = params.get("max_tokens")
self.temperature = params.get("temperature")
openai.api_key = os.getenv("OPENAI_API_KEY")
def _execute(self, params: Optional[dict] = None) -> Optional[bool]:
"""Query OpenAI LLM."""
message = self.inputs["generated_prompt"].read()
if message is None:
return
messages = message["message"]["chat_messages"]
# Query OpenAI LLM
self.log("Querying OpenAI LLM...")
response = openai.ChatCompletion.create(
messages=messages,
stream=False,
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
)
message["message"]["chat_messages"].append(
{
"role": "assistant",
"content": response.choices[0].message.content,
}
)
self.outputs["llm_response"].write(
message["message"]["chat_messages"]
)
class SecurityEvaluation(AbstractNode):
"""Node that evaluates security of code."""
def _execute(self, params: Optional[dict] = None) -> None:
"""Evaluate Python code."""
message = self.inputs["llm_response"].read()
if message is None:
return
# Make a temporary file with the LLM code
python_code = message["message"]
issues_list = []
with tempfile.NamedTemporaryFile(suffix=".py", delete=False, mode="w") as tmpfile:
tmpfile.write(python_code)
# Setup Bandit and run tests on the temporary file
b_mgr = bandit.manager.BanditManager(bandit.config.BanditConfig(), 'file')
b_mgr.discover_files([tmpfile.name], None)
b_mgr.run_tests()
# Store results
results = b_mgr.get_issue_list(
sev_level=bandit.constants.LOW,
conf_level=bandit.constants.LOW,
)
# Cleanup (remove the temporary file)
tmpfile.close()
os.remove(tmpfile.name)
if results:
self.output["evaluation_result"].write(results)
Try running locally
Visit GitHub for the latest version of the code and see if you can run it yourself.
You can install the app using poetry after cloning from GitHub using:
poetry install
First, make sure that docker is running and run the required docker services in the background using:
poetry run aineko service start
Then start the pipeline using:
poetry run aineko run ./conf/gpt3.yml
When the pipeline is live, you can visit http://127.0.0.1:8000/docs in your browser to interact with the endpoints via the Swagger UI.
Join the community
If you have questions about anything related to Aineko, you're always welcome to ask the community on GitHub or Slack.