Internal Models
This section describes the models used internally by Aineko to serialize and deserialize user configurations.
Pipeline Configuration
aineko.models.config_schema.Config
Pipeline configuration model.
Pipeline configurations are defined by the user in a YAML file. This model is a representation of a serialized pipeline configuration.
Source code in aineko/models/config_schema.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
Pipeline
Pipeline model.
Source code in aineko/models/config_schema.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
default_node_settings
class-attribute
instance-attribute
default_node_settings: Optional[NodeSettings] = None
name
instance-attribute
name: str
Node
Node model.
Source code in aineko/models/config_schema.py
40 41 42 43 44 45 46 47 |
|
class_name
class-attribute
instance-attribute
class_name: str = Field(..., alias='class')
inputs
class-attribute
instance-attribute
inputs: Optional[List[str]] = None
node_params
class-attribute
instance-attribute
node_params: Optional[dict] = None
outputs
class-attribute
instance-attribute
outputs: Optional[List[str]] = None
Node Configuration
aineko.models.config_schema.NodeSettings
Node settings model.
This model is used to define settings for a node. The main use case is to define the number of CPUs to use for a node. However, it can be extended to include all Ray remote parameters as described in the Ray documentation.
Source code in aineko/models/config_schema.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
model_config
class-attribute
instance-attribute
model_config = {'extra': 'allow'}
num_cpus
class-attribute
instance-attribute
num_cpus: Optional[float] = Field(
None,
description="The number of CPUs to use for a node.",
gt=0.0,
examples=[1.0, 0.5],
)
Dataset Configuration
aineko.models.dataset_config_schema.DatasetConfig
Dataset configuration model.
Source code in aineko/models/dataset_config_schema.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
location
class-attribute
instance-attribute
location: Optional[str] = Field(
None,
description="Location of the dataset storage layer. For example, a kafka broker address.",
examples=["localhost:9092"],
)
params
class-attribute
instance-attribute
params: Optional[Dict[str, Any]] = Field(
None,
description="The initialization parameters for the dataset. These are mainly used by power users to fine-tune the dataset behavior. For example, Kafka topics can be configured with a number of options found in: https://kafka.apache.org/documentation.html#topicconfigs",
examples=[{"param_1": "bar"}],
)
type
class-attribute
instance-attribute
type: str = Field(
...,
description="A dotted path to the dataset class implementation.",
examples=[
"aineko.datasets.kafka.KafkaDataset",
"foo.bar.baz.BazDataset",
],
)