AbstractNode
The AbstractNode
class serves as the base class for all user-defined nodes.
aineko.AbstractNode
AbstractNode(
pipeline_name: str,
node_name: Optional[str] = None,
poison_pill: Optional[ActorHandle] = None,
test: bool = False,
)
Bases: ABC
Node base class for all nodes in the pipeline.
Nodes are the building blocks of the pipeline and are responsible for executing the pipeline. Nodes are designed to be modular and can be combined to create a pipeline. The node base class provides helper methods for setting up the dataset inputs and outputs for a node. The execute method is a wrapper for the _execute method which is to be implemented by subclasses. The _execute method is where the node logic is implemented by the user.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
name of the node |
pipeline_name |
str
|
name of the pipeline |
params |
dict
|
dict of parameters to be used by the node |
inputs |
dict
|
dict of AbstractDataset objects for inputs that node can read / consume. |
outputs |
dict
|
dict of AbstractDataset objects for outputs that node can write / produce. |
last_hearbeat |
float
|
timestamp of the last heartbeat |
test |
bool
|
True if node is in test mode else False |
log_levels |
tuple
|
tuple of allowed log levels |
logging_dataset |
str
|
name of the logging dataset |
local_state |
dict
|
shared local state between nodes. Used for intra- pipeline communication without dataset dependency. |
Methods:
Name | Description |
---|---|
setup_datasets |
setup the dataset query layer for a node |
execute |
execute the node, wrapper for _execute method |
_execute |
execute the node, to be implemented by subclasses |
Initialize the node.
Source code in aineko/core/node.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
inputs
instance-attribute
inputs: dict = {}
last_heartbeat
instance-attribute
last_heartbeat = time()
log_levels
instance-attribute
log_levels = get('LOG_LEVELS')
logging_dataset
instance-attribute
logging_dataset: str = get('LOGGING_DATASET')['name']
name
instance-attribute
name = node_name or __name__
outputs
instance-attribute
outputs: dict = {}
params
instance-attribute
params: Dict = {}
activate_poison_pill
activate_poison_pill() -> None
Activates poison pill, shutting down entire pipeline.
Source code in aineko/core/node.py
275 276 277 278 |
|
enable_test_mode
enable_test_mode() -> None
Enable test mode.
Source code in aineko/core/node.py
99 100 101 |
|
execute
execute(params: Optional[dict] = None) -> None
Execute the node.
Wrapper for _execute method to be implemented by subclasses.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
Optional[dict]
|
Parameters to use to execute the node. Defaults to None. |
None
|
Source code in aineko/core/node.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
log
log(message: str, level: str = 'info') -> None
Log a message to the logging dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message |
str
|
Message to log |
required |
level |
str
|
Logging level. Defaults to "info". Options are: "info", "debug", "warning", "error", "critical" |
'info'
|
Raises: ValueError: if invalid logging level is provided
Source code in aineko/core/node.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
run_test
run_test(runtime: Optional[int] = None) -> dict
Execute the node in testing mode.
Runs the steps in execute that involves the user defined methods. Includes pre_loop_hook, _execute, and post_loop_hook.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime |
Optional[int]
|
Number of seconds to run the execute loop for. |
None
|
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
dataset names and values produced by the node. |
Source code in aineko/core/node.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
run_test_yield
run_test_yield(
runtime: Optional[int] = None,
) -> Generator[Tuple[dict, dict, AbstractNode], None, None]
Execute the node in testing mode, yielding at each iteration.
This method is an alternative to run_test
. Instead of returning the
aggregated output, it yields the most recently read value, the
written value and the current node instance at each iteration. This is
useful for testing nodes that either don't produce any output or if you
need to test intermediate outputs. Testing state modifications is also
possible using this method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
runtime |
Optional[int]
|
Number of seconds to run the execute loop for. |
None
|
Yields:
Type | Description |
---|---|
dict
|
A tuple containing the most recent input value, output value and |
dict
|
the node instance. |
Example
for input, output, node_instance in sequencer.run_test_yield(): print(f"Input: {input}, Output: {output}) print(f"Node Instance: {node_instance}")
Source code in aineko/core/node.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
setup_datasets
setup_datasets(
datasets: Dict[str, Dict],
inputs: Optional[List[str]] = None,
outputs: Optional[List[str]] = None,
prefix: Optional[str] = None,
has_pipeline_prefix: bool = False,
) -> None
Setup the dataset inputs and outputs for a node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
datasets |
Dict[str, Dict]
|
dataset configuration |
required |
inputs |
Optional[List[str]]
|
list of dataset names for the inputs to the node |
None
|
outputs |
Optional[List[str]]
|
list of dataset names for the outputs of the node |
None
|
prefix |
Optional[str]
|
prefix for topic name ( |
None
|
has_pipeline_prefix |
bool
|
whether the dataset name has pipeline name prefix |
False
|
Source code in aineko/core/node.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
setup_test
setup_test(
dataset_type: str,
inputs: Optional[dict] = None,
outputs: Optional[List[str]] = None,
params: Optional[dict] = None,
) -> None
Setup the node for testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_type |
str
|
type of dataset to use for testing (e.g. aineko.datasets.kafka.KafkaDataset) |
required |
inputs |
Optional[dict]
|
inputs to the node, format should be {"dataset": [1, 2, 3]} |
None
|
outputs |
Optional[List[str]]
|
outputs of the node, format should be ["dataset_1", "dataset_2", ...] |
None
|
params |
Optional[dict]
|
dictionary of parameters to make accessible to _execute |
None
|
Raises:
Type | Description |
---|---|
RuntimeError
|
if node is not in test mode |
Source code in aineko/core/node.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|